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THE VELOCITY OF PROPAGATION OF A SIGNAL IN A FLUID WITH RELAXATION* 

O.YU. DINARIYEV 

Certain mathematical properties of a model of fluid hydrodynamics are 
investigated taking the effects of memory (lag) in transport phenomena 
into account. Relaxation kernels are introduced in the transport 
equation instead of the kinetic coefficients (viscosity and thermal 
conductivity) in such models. Rheological relationships algebraic in 
form are replaced by integral relations in time. The principal result 
is the derivation of constraints that are imposed on certain parameters 
of the integral kernels when necessary if the condition of finiteness of 
the propagation is taken in a small perturbation medium. A general 
scheme is constructed for estimating the relaxation kernels of a coupled 
system of hydrodynamics equations with a memory. 

To ensure the finiteness of the velocity of propagation of small perturbations in a fluid 
the Navier-Stokes-Fourier material relationships must be modified. It was proposed in /l/ to 
eliminate the paradox of instantaneous signal propagation during heat conduction by replacing 
the parabolic equation for the temperature by a hyperbolic equation. It is shown 121 that 
finiteness of the signal rate for transport processes is associated with the relaxation nature 
of the flux dependence on the gradient of the transferable quantity. The need to replace the 
kinetic coefficients by relaxation kernels is known from non-equilibrium thermodynamics /3, 4/ 
and experiment /5/. 

1. We will study the motion of a fluid in an infinite space with respect to a system of 
Cartesian coordinates. The subscripts i, j, k, 1 correspond to the coordinates and run through 
the values 1, 2, 3. Summation is over the repeated subscripts. 

The fluid state at any time t is given by the field of the density p, the velocity Vi? 
the temperature T. The symmetric stress tensor in a viscous fluid is given by the expression 

Pij = --P&1 + Tilt where p =p(p, T) is the thermodynamic pressure, and rij is the viscous 
stress tensor /6/. Let qi be the heat flux vector in the fluid. Entropy production in the 
fluid particle is determined by the expression 

o = T-+i,eij $_ qi (TM'),i, eij = 'i, (VI,, + Uj,J 

The material relationships 

(1.1) 

zij = ?,Trh6ij + 2q,#ij, 1, = ekkr sif = kij - ‘136ijh 
qi = --XT, i 

(1.2) 
(1.3) 

hold in the Navier-Stokes-Fourier model. 
Here qv is the volume viscosity, 9s is the shear velocity, and x is the thermal 

conductivity,which depend on p, T. 
We will investigate small perturbations of the density, velocity, and temperature in the 

background of a homogeneous fluid at rest. Consequently, we assume that p = pO +r, T = T, + 8, 
where rr vi, U are small and POT TO are constants. 

Let us introduce auxiliary notation. Let g = g(t) be a certain real function. Let the 
symbol gF(o) denote its Fourier transform 

gF (0) = I’s- e-g (t) dt 
--m 

The equality 

(&(O)), = gF (-m*) (4.4) 

hold because of g(t) is real. 
Later the Paley-Wiener theorem will be utilized in the following form (see the proof in 

/7/l. 
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E be a space of rapidly decreasing functions on !?, and E’ its conjugate space. 
and the support f lies in the interval IJ,, + co), then F = fp is a holomorphic 
the domain Im o (0 that satisfies the inequality 

) F (a) 1 <C (1 + 1 o ) )Ns 1 Im o I-Nz exp (J Im o) (1.5) 

positive constants C, N,. If f is a smooth function here, then the function F 
is continuous up to the line Im 0 =O. 

B. Let F=F(o) be a holomorphic function in the domain Imo (0 that satisfies 
the inequality (1.5) for certain J,C,N,, where C,N,>O. Then a function fEE' exists 
with support in the interval [J,-l- co) such that fp = F. 

In order to take account of the finiteness of the signal propagation velocity in a fluid, 
it is natural to change from the model (1.2) and (1.3) to a circular model in which the vis- 
cosity and thermal conductivities are replaced by certain relaxation kernel K. = K,, (t) (a = 

1% 2, 3). In the linear approximation we obtain (& * & is the convolution of the functions 

gl and &?a) 
zi, = Kl * h15,~ + 2Kz * sfj, qj = -K, * ‘3, i (1.6) 

For slow processes the relationships (1.6) change to (1.2) and (1.3) where 

+= +m 

qv((~o, T,) = 5 K, 0) dt, ns(po, T,) = s K, 0) dt, ~(~09 To) = \-K,(t) dt 
-ca -0D -co 

We investigate the conditions that the kernels & (0 satisfy. It follows from the 
causality principle that K.(t) = 0 for t (0. We will assume (and this is verified suf- 
ficiently well by statistical physics) that K,,(t) are smooth positive monotonic rapidly 
decreasing functions for t 2 0. 
functions in the domain Im&<O, 

According to Theorem A KaF(w)(a = 1,2,3) are holomorphic 
and are continuous down to the line Im 0 =O. 

It follows from the second law of thermodynamics that entropy production in a fluid 
particle is non-negative 

for a process for which r, v,, 8 tend to zero as t-cfm. 
In the lowest order of smallness we obtain from (1.1) 

Changing to Fourier transforms here, taking (1.4) into account, we have 

W(z~)=&J do [Re KIF (0) 1 LF (W x’) 1” + 

” 

2 He &F (0) 1 SijF (0, 2’) I* + + Re &F (0) 1 e.iF (6’~ I’) 1’1 

w 

By VirtUe of the arbitrarinessof &(o,&, SifF(m,z*) and e,iF (0, I’) for 0 > 0 ineqUalitieS 

that are compatibility conditions for the model (1.6) with thermodynamics 
1,2, 3), 0 E u? 

Re K~F (0) > 0 (O = 
follow from the relationships (1.7) and (1.8). We will use stronger inequal- 

ities that are apparently always satisfied in practice 

Re Kaf (0) > 0 (U = 1, 2, 3) (1.9) 

where o is an arbitrary real number. It follows from the assumptions made relative to the 
kernels and the general properties of holomorphic functions that the inequalities (1.9) are 
satisfied in the whole lower half-plane of the complex plane Im 0 GO. 

The asymptotic form 

&r (0) = -iw-‘K, (0) + o ( ) w I -I), Im w < 0 (1.10) 

results from the smoothness properties of the kernels. 

2. Fluid motion is described by the dynamic continuity, momentum, and energy equations 



4% 

Here U = U(&T) is the fluid internal energy per unit mass, ft are the external mass 
forces, and e is the heat source per unit mass. Let us introduce the entropy per unit mass 
S = S [p* T). The entropy S is connected with the energy U by the differential relationship 

dU = TrkS - pd (lip) (2.2) 

We will denote the thermodynamic quantity evaluated for p = pot T = To by the symbol 
for this quantity with a zera subscript. Then in a linear approximation we obtain from (2.1) 
and (2.2) 

Expressions (1.6) must be used in (2.3) for Tijr 41. 
We introduce the auxiliary notation 

t2.41 

We will assume that a>@, p>o. 
TO investigate signal propagation in a fluid, the solution of (2.3) with a &-like source 

must be considered 
fi = fib (1) 6 (9) 6 (2”) 8 (P), e = e&3 (t) 8 (z2”) 6 (9) 6 (9) (2.5) 

It is natural to solve system (2.3) with the source term 12.5) by the Fourier transform 
method in time and the space variable- We will denote the transposition operation of matrices 
by the symbol "+"- We introduce the column matrix k (wave vector) and z by the relationships 

k+ = I k,W,tl , l+ = II Wt~rr,,~~,tt . Let km = k+k and let US Select a pOi!ItOf space with the 

coordinates za' = L6,i, L>O. Then the Fourier transform of the density, velocity, and tem- 
perature fields in time at this point of space will be 

It is convenient to go over to integration in spherical coordinates B, 9, T, related 
to k,, k,, ka by the equalities 

k, = R singcos cpt k, = R sinqsin cp, k3 = R coslif 
R 13 0, q7 E I---n/Z, n/21* 9) E I-n, nl 

in expression (2.7). 
After integration with respect to cp each matrix element is the sum of components of the 
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O,<R<f-, --n/2 ,< 9 g d.2 
WheL-e n, 1, m are certain natural numbers c, = h(m). 

We note that the equation P (w, R8) -0 in R has six roots, where the set of roots is 
invariant relative to the inversion transformation fi -(--fi). It is convenient to number 

these roots so that fR,(ol are roots of the equation 

iw j-R'.& =O (2% 

where ImR, 2% and *R,(w), f& (0) are roots of the equation 

R*MS fioMo jCX) t_ iPw(a + $I + io (A& + A&))- iwy =0 (2.10) 

where Im R, (0) > 0 (a = 2,3). 

LSW. The strict inequalities ImR, (a)>0 (a = i, 2,s) hold for all w lying in the 
lower complex half-plane. 

Proof * We assume that ImR,(w)=O for a certain w,. Then from f2.9) we obtain ReMa<U, 

which contradicts 11.9). 
We now investigate (2.10) - The quantiCy Z= --M'Bz satisfies the equation resulting 

from i2.10) 

al = MO + allio), Al= Ma, h, = B/@o) 

Let ~j =;I R@hj, 81 =I Im $ (j = 1, 2, 3). We note that according to the assumptions made earlier 

a;> 0 (I = 1, 2); as > 0; sign BJ = -sign Re fu (2.12) 

We consider the parameter p as variable, changing from zero to 
roots which depend continuously on #kz.= z,@) (a= 5,2), where for all 

Re % (B) > 0 

j-w. Eq.lS!.llf has two 

B. a 

(2.13) 

Indeed, fox p-0 we have % (If) =i h,@=1, 2) and Rez,(O)=cz,>O by virtue of (2.121. 
For a certain positive p and a certain u let Rez,(&=O, Substituting this root into the 
left-hand side of (2.11) and taking the real and imaginary parts, two real equations can be 
obtained for the unknown quantity Imz,(fi). It is possible to eliminate Imr(h) from these 
equations and then the equality 

that is incompatible with (2.12) is obtained. 
Now let ImR,(w)= 0 for certain o where a= 2 or a= 3. Then 

Be Z~-~ 7 Im wlRaa <O 

which contradicts (2.13). The lemma is proved. 
We return to the investigation of (2.8). We note that since the elements of the matrices 

p IO, k3 (r: 6% kc))-' depend as polynomials on kl, then the equality n=tjm holds. Further- 
more, the matrix I: (c, kJ remains invariant under the formal substitution I&*, 9) u I--R* 
-% -CA whereupon it follows that m = Zq, where 4 is a natural number. 

We substitute u = sin* into 12.8) and integrate with respect to the variable u 

y, = c, i C,d (- l)d 
Ck@ 

.s exp (iRLu) R t+yJ+al (p (a, Jp))_l dR &( 1= 

osai-tra, -1<ua 

c, i ad +f Rk%-@tl exp (iRL) (P (w, Re))-r dR 

Here cf: are binomial coefficients, and ad are certain constants. Integration with 
repect to R can be performed in the last integral by using the theory of residues and then 
the expression 

(2.14) 

is obtained where %Cz Iti) are holomorphic functions in the half-plane Irn o -=C.o that satisfy 
the inequality 
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I b (0) I < C I Im 0 IP (1 + I 0 I JNz 

for certain constants C,N,>O. 
It follows from (2.14) and (2.6) that 

(2.15) 

where 1, = 1. (co) are vectors whose components satisfy the inequality (2.15). 
Let us introduce the functions 

L, = L,(o) = Im R,(w)/(-Im o), Im w < 0 (a= 1, 2, 3) 

into the considerations. 
For the signal velocity in the fluid not to exceed a certain a priori given velocity C, 

according to Theorem A it is necessary and according to Theorem B it is sufficient that the 
inequalities 

L,(o)>c-l,Imo<O (a=1,2,3) 

be satisfied. 
We set 

Vi' = inf L,(w) (a = 1,2,3) 
Im co<0 

We note that the functions L, = L,(O) cannot reach the lower boundary at any point of 
the lower complex half-plane. 

In fact, assume the opposite: let the point o= oO,Im oO<O be the point of the absolute 
minimum of the function L,(o) for certain (1: La (00) = F,-'. Then the harmonic function of the 
two real variables o1 and 0% 

h, = h, (ml, wa) = ha& (e1+ 0%) + F,-l oa 

reaches the absolute minimum, equal to zero, at wO. Consequently, h.rO, which however con- 
tradicts the continuity of the function K~F (a) on the real axis. 

Thus the equality 

IJ,' = lim inf L,(o) 
E4-3 lW>/E 

holds. 
Using (1.10) and (2.4), we now obtain 

V, = m,%, V,, 3 = (2m,a")'l~ [a” + fF t_ ((a” + r) - 4m,cz")'~+'~~ (2.16) 

a0 = a + m,, $ = f5 + m3 

It is clear from the previous discussion that v, (a = 1, 2,3) 
velocities of different modes in the fluid. The first equality in 
obtained earlier /2/ since this mode describes vortex transport in 

The condition 
v, < c (a = 1, 2,3) 

are the maximum propagation 
(2.16) corresponds to that 
a fluid. 

(2.17) 

must be taken into account in constructing fluid models with a finite signal propagation 
velocity. Together with (2.16) the inequalities (2.17) are constraints on the relaxation 
kernels. 

1. 

2. 

3. 
4. 
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FIRST AND SECOND FUNDAMENTAL AXISYMMETRIC PROBLEMS OF ELASTICITY THEORY FOR 
DOUBLY-CONNECTED DOMAINS BOUNDED BY THE SURFACES OF A SPHERE AND A SPHEROID* 

A.G. NIKOLAYEV and V.S. PROTSENKO 

The method of constructing solutions of the fundamental boundary-value 
problems for a homogeneous Lame equation of multiconnected domains 
bounded by canonical surfaces of cylindrical and spheroidal coordinate 
systems described in /l/ is extended to domains with other geometry. 
The problems under consideration reduce to infinite systems of linear 
algebraic equations of the second kind with completely continuous 
opertors. A solution in the form of expansions in a small parameter for 
the problem of the hydrostatic pressure of a sphere with a centrally 
located spheroidal cavity is presented as an example. 

1. We consider the first and second fundamental axisymmetric problems for a homogeneous 
Lame equation 

Ca u + (1 - Zv)-I grad div u = 0 (I.11 

(v is Poisson's ratio) for a sphere with a spheroidal cavity whose axis passes through the 
centre of the sphere. Introducing identically directed systems of spherical coordinates (r,9, 
cp) and prolate spheroidal coordinates (E1,nl,q) superposed on the centres of the boundary 
surfaces, we obtain the following relation between the coordinates 

r cos 8 = c ch E1 cos nr + a, r sin 8 = c sh %, sin n1 (1.2) 

(2C is the focal length of the spheroidal system of coordinates, and (L is the spacing between 
the centres of the boundary surfaces). 

Let displacement vectors be given on the boundary 

(1.3) 

(6, e, are unit vectors of the cylindrical system of coordinates). We later assume that 

(1.4) 

We will seek the solution of problem (1.1) and (1.3) in the form 


